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Systems of hard hexagons on a triangular lattice are investigated. The orienta- 
tion of the hexagons is kept fixed, while the size of the hexagons is varied. 
The existence of a phase transition is proved for all sizes by means of the 
Peierls'argument. The proof does not imply a phase transition in the con- 
tinuous limit. 
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1. I N T R O D U C T I O N  

The Pe ie r l s ' a rgument  is one o f  the few methods  for  p rov ing  the existence of  a 
phase  t rans i t ion  wi thout  explicit  calculat ion.  The  idea  goes back  to  Peierls a) 
and  the me thod  was given a r igorous  fo rmula t ion  for  the ord inary ,  ferro-  
magnet ic  Ising mode l  by  Grit t i ths (2) and  Dobrush in .  (3~ The a rgument  was 
la ter  ex tended to other  lat t ice models  with s imilar  proper t ies  c4~ and mos t  
recently Ruel le  (5~ has succeeded in app ly ing  the me thod  in the first r igorous  
p r o o f  o f  the existence o f  a phase  t rans i t ion  in a con t inuous  model .  

The  first app l ica t ion  of  Pe ie r l s ' a rgument  to lat t ice gases with repulsive 
poten t ia l  is due to Debrush in ,  ~6) who modif ied  the  a rgument  so tha t  it  could  
be appl ied  to  the case o f  a simple cubic  lat t ice in v d imensions  (v ~> 2) with 
ei ther  neares t -ne ighbor  repuls ion or  neares t -ne ighbor  exclusion. La te r  
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Heilmann (71 extended this method to the case of a triangular lattice and a 
hexagonal lattice. 

The problem of nearest-neighbor exclusion on the triangular lattice is 
identical to the problem of placing hard hexagons of a certain size and with 
a fixed orientation on a triangular lattice. In this paper we let the size of  the 
hexagons increase and show that the phase transition persists as the size goes 
to infinity. However, the lower bound on the fugacity above which the 
existence of a solid can be proved increases as N ~v, where N is a measure of 
the linear size of  the hexagons, and this is too fast to prove the existence of a 
solid phase for a continuous system of hard, oriented hexagons. 

The problem of a phase transition on a triangular lattice has been 
investigated for some of the smallest (nearest-, next-nearest-, and third-nearest 
neighbor exclusion) hexagons by numerical methods. C8) There is general 
agreement that these systems do have a phase transition f rom a gaseous to a 
solid state. 

2. PEIERLS'  A R G U M E N T  

In this section we shall give a general description of the traditional 
version of Peierls'argument, primarily to serve as a reference for the following 
sections. The aim of the argument is to locate values of the thermodynamic 
variables where two or more different phases (or states) can exist simul- 
taneously. In order to avoid unnecessary complication, we describe the case 
of a two-dimensional system which can exist in only two states. 

Call the two states A and B. The first step is to define the two states; 
more precisely, one has to associate with each state a definite local structure 
such that for a given configuration of the system one can say for each vertex 
whether it is in state A or state B. A given configuration is then associated 
with a system of contours separating regions with different local structure, and 
one could alternatively consider a system of contours as defining the con- 
figuration. 

I f  the whole boundary of the system is fixed to have the A structure, 
then the system consists of closed contours; a vertex with the B structure is 
then surely inside at least one contour. An upper bound on the probability 
of finding the B structure at a vertex, given that the boundary of the system 
is A, is then furnished by the probability of having an outer contour (i.e., a 
contour that is not inside another contour) around the vertex. 

We introduce Z for the partition function 

Z = ~ w(conf) (1) 
eons 

where the sum runs over all configurations and w(conf) is the appropriate 
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canonical weight of the configuration in question. The probability of a given 
(closed) contour Co is then given by 

P(Co) -- ~ w(conf)/Z (2) 
conf~C o 

where the sum is the same as in Eq. (1), but is now restricted to configurations 
that contain the contour Co as an outer contour. An upper bound on p(Co) 
can be obtained by making the denominator smaller. The way to do that is to 
delete terms in Z such that one gets a one-to-one correspondence between 
terms in numerator and denominator. A term in the denominator is obtained 
from the corresponding term in the numerator by deleting the contour Co but 
keeping the rest of the system of contours, possibly with a slight adjustment 
of the contours that were inside Co �9 

]f  the thermodynamic variables are chosen such that the "free energy" of 
a region where the configuration is all A is the same as the "free energy" for 
a region of the same shape with the configuration B throughout, then the 
canonical weight of a configuration can be considered as a product of con- 
tributions from the contours. If, furthermore, the contribution from the 
contours are independent of which state is on which side, then the above 
estimate ofp(C0) yields 

p(Co) <. w(Co) (3) 

where w(Co) is the contribution to the canonical weight from the contour Co �9 
In general one should be able to make the estimate 

w(Co) ~< A Ic.l (4) 

where I Co ] is the length of the contour Co and A is the canonical weight per 
unit contour. It is essential for the argument that the two states have been 
chosen such that ~ < 1 and it should even be possible to make A much 
smaller than one by a suitable choice of the thermodynamic variables. (The 
condition A < 1 is obviously necessary from a physical viewpoint since it 
implies that the contours should be energetically unfavorable.) 

To finish the estimate of the probability of finding a vertex with con- 
figuration B, one has to sum p(Co) over all possible contours Co that enclose 
the vertex. The number of  different contours of length l surrounding a fixed 
point can in general be bounded by 7q ~, where y and q are some constants. 

With a for the smallest possible length of a contour, one finds the follow- 
ing estimate for the probability of finding B if the boundary is A: 

PB ~ 7' ~ (Aq) z (5) 
t = a  
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It is easily seen that with sufficiently small A one can get the bound on PB to 
be less than �89 By interchanging the roles of A and B, one then finishes the 
argument by observing that the state of the system consequently depends on 
the boundary condition. 

3. T H E  M O D E L  

The model is the lattice gas model, the lattice is the triangular lattice, 
and the particles are hard hexagons. The contours of the hexagons are con- 
fined to the lattice points (the usual lattice gas restriction). The orientation of 
the hexagons is fixed by the requirement that the edges of the hexagons should 
be parallel to the edges of the lattice. For convenience we keep the spacing of 
the lattice fixed and let the size of the hexagons increase. Since we want to be 
able to cover the lattice with nonoverlapping hexagons, the length of an 
edge of a hexagon has to be an integer multiple of the lattice constant (the 
distance between neighboring points in a lattice); we will denote this integer 
by N. The case N = 1 corresponds to the problem considered earlier of 
nearest-neighbor exclusion. In the following we consider for convenience 
N > I .  

The number of lattice points inside a hexagon will be M = 3N z if the 
points on the edges of the hexagons are counted properly. Having defined 
the model, we proceed to define the concepts necessary for the Peierls argu- 
ment. A region with one state is a region with close-packed hexagons. The 
structures of different states are generated by translating one such ordered 
state on the triangular lattice by an amount less than the diameter of the 
hexagons. The number of different states equals M. 

In the earlier applications of Peierls'argument one had essentially only 
one type of contour; in this case, however, the large number of different 
states leads to many different types of contour. 

If  a configuration contains a void large enough to accommodate addi- 
tional hexagons, we imagine it to be filled up with virtual hexagons. The 
problem of distinguishing between real and virtual hexagons will be consid- 
ered later; for the moment we shall treat them alike and consequently we 
can assume that no configuration contains a void large enough to accommo- 
date a hexagon. 

Def in i t ion  1. An element of contour is either an area not covered by 
hexagons or a common part of the edges of two hexagons belonging to two 
different states. 

Defini t ion  2. One contour is a set of connected elements of contour 
not connected to any other elements of contour (see Fig. 1). This definition 
clearly allows contours within contours. 
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Fig. 1. An  outer  contour  (shaded area and heavy 
lines) with another  contour  inside it. 

Definition 3. The area A(C) of a contour C equals one-half the 
number of elementary triangles constituting the empty area of the contour. 

As usual we consider the boundary of the system to have one fixed 
structure which we will call the A structure. A point inside the boundary not 
covered by a hexagon belonging to the A structure must necessarily be sur- 
rounded by or part of a contour. We only need to consider contours not 
surrounded by other contours; such contours necessarily are surrounded by 
the A structure. 

We shall now consider how one such contour is specified. Imagine the 
whole space covered with hexagons of the A structure. The edges of these 
hexagons make up a hexagonal lattice. In order to form a contour, we start 
by making a hole in the A structure. This hole is specified by a self-avoiding 
polygon on the hexagonal lattice mentioned above. This polygon, which 
constitutes the boundary between the outer A structure and the contour, is 
denoted by B. Besides specifying this outer boundary, we also have to 
specify the inner boundaries of the contour in order to get a complete specifi- 
cation of the contour. This is done by giving the positions of all the hexagons 
next to the boundaries. 

A contour C divides the interior hexagons into regions which are 
separated from each other and from the outer A structure by C; we term 
these regions C-interior regions. The hexagons along the boundary of a region 
(i.e., the hexagons adjacent to C) will necessarily all have the same structure; 
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we term this structure the boundary structure of the region. (Inside a region 
there might very well be additional contours.) 

According to the method considered in Section 2, we now have to 
describe how to delete terms in the denominator on the right-hand side of 
Eq. (2) in order to secure a one-to-one correspondance between the configura- 
tions included in the summation in the denominator and the configurations 
making up the numerator. The hexagons of a C-interior region are translated 
by an amount which transforms the boundary structure of the region into 
the A structure. If all the C-interior regions are translated in essentially the 
same direction (it is always possible to chose a direction within a fixed angle 
of 60 ~ ) and if no region is translated longer than necessary, then this trans- 
formation will not cause any hexagons to overlap. By a trivial conservation 
law one has the same total area [namely A(C)] left uncovered before and 
after the transformation; but after the transformation all the hexagons 
around this uncovered area have the A structure and the void can conse- 
quently be completely covered by hexagons with the A structure. If  this is 
done, one gains A(C)/M hexagons. 

With 
z = e ~" (6) 

for the fugacity of a hexagon, one then obtains 

p(C) ~.~ e -A(cIr (7) 

The probability of a given point x being surrounded by or part of a contour 
is given by 

[,(x) = y~ p(C) (S) 
C~x 

where the sum runs over all outer contours C with the property that the point 
x is inside the outer boundary B of C. Introducing (7) into (8), one obtains 

D(X) • 2 e--A(C)eu/M (9) 

or, introducing the destinction between the outer boundaries and the inner 
hexagons next to C, 

D(x) ~ Z Z e-AtC)~"/m 
Bs~ inner 

flex 

or~ 

P(x) ~ ~ S(B) (10) 

S ( B ) =  ~ e-A(C)e"l M (11) 
i nne r  
hex  
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The summation over the inner hexagons can be split up into a summation 
over the outer inner hexagons, i.e., the hexagons nearest to B and a summa- 
tion over the rest: 

S(B) = • ~, e -A(c)~"/M (12) 
outer  i n n e r  

i n n e r  hex  i n n e r  hex  

The maximum number of hexagons nearest to B will be given by the shape 
of B; let us call this number n. The first summation will then be over the 
possible values of their position coordinates, j(1),j(2),...,j(n). The problems 
arising in connection with hexagons which are not placed will be dealt with 
in the appendix. Similarly, the maximum number of inner inner hexagons 
will be given by the shape of B; let us denote this number by m. The second 
summation will then be a summation over the position coordinates of these 
hexagons, j(n q- 1),...,j(n q- m); we again defer the proboem of unplaced 
hexagons to the appendix. 

Then S(B) can be written as 

S ( B ) =  ~ Z "'" 2 2 "'" Z e-A(C)~"/M (13) 
j ( l )  d(2) ](n) ] (n+l )  j (n+m) 

The value of A(C) depends on B and all the position coordinates 
j(1) ..... j(n + m), and we introduce a set of rules on how to divide A(C) into 
contributions from each of the n + m hexagons. The details of these rules 
are described in the appendix; for the present it suffices that we can write 

n+m 
A(C) = ~ ai (14) 

i=1 

where ai is the part of A(C) attributed to the ith hexagon. Making the rules 
for the division of A(C) such that ak is independent of j(/), l > k, and intro- 
ducing the abreviation 

bi -= e -~i~"/M (15) 

we can now write Eq. (13) in the form 

S(B) = ~ b 1 "" ~ b n ~ b.+ 1 ",, ~ bn+ m (16) 
j(1) j(n) d(n+l) J(n+m) 

In the appendix we show the following inequality: 

bi <~ max{3(flt~/M, N),  1}, i > n (17) 
j( i)  

for fixed values of the positions of the preceding hexagons j(1) ..... j(i --  1); it 
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/ / 

n t .  

/ i t 
(i) (2} ' (3) / (4) , (5} , 

Fig. 2. The five types of segments into which the 
outer boundary B of a contour can be broken. The 
segments are shown by heavy lines and the continuation 
of B is shown dashed; the interior side is marked int. Note 
that the segments are terminated by corners where the 
interior angle is 240 ~ while segments continue over 
corners where the interior angle is 120 ~ 

is impor tant  that  the bound  8 is independent  o f  these positions. (Note that  
i > n implies that  the ith hexagon is an inner inner hexagon.) I f  Eqs. (16) and 
(17), are combined we obtain the inequality 

s(B) 1 Z bl-.. Z b. (18) 
~11) j(n) 

p r o v i d e d  8 ~< 1. 

Since the outer  boundary  B is a self-avoiding polygon on a hexagonal  
lattice, it can be considered to be made up of  the five types o f  segments 
shown in Fig. 2. The segment type 5 cannot,  in fact, occur since it would have 
been filled with a virtual hexagon and the boundary  would then look different. 

Calling the length of  the boundary  l (in units o f  the edges o f  the hexa- 
gons), the number  of  B 's  with a given length l surrounding a fixed hexagon v 
is less than v(/): 

The number  in the first parentheses is an upper  bound  on the number  o f  
shapes for  given l, and the number  in the next parentheses is an upper  bound  
on the number  of  hexagons that  can be inside a polygon of  length l. I t  is 
clear that  l has to be even. The lowest possible value for  l is 12 (see Fig. 3). I f  

Fig. 3. Left: A contour with the smallest 
possible outer boundary. Right: Two possibil- 
ities which will not occur since the voids will 
necessarily be covered by virtual hexagons. 
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we introduce r/(i) for the number of segments of type i, we find the following 
expression for h 

l -- 2~7(1) -? :7(2) + 3~?(3) + &7(4) (20) 

Since B is a self-avoiding polygon, it follows that the numbers of segments of 
type 2, 3, and 4 are related by 

~7(2) q- 6 = ~7(3) q- 2~(4) (21) 

In general it will be possible to place one outer inner hexagon outside each 
segment. However, the hexagons placed outside segments of type 2 will 
actually be regarded as inner inner hexagons. For  the other possibilities one 
obtains bounds of the same type as Eq. (17): 

b~ <~ yk(fltz/M, N), i <~ n (22)  

where the index k refers to the type of segment next to which the ith hexagon 
is located, k = 1, 3, 4. In the appendix we obtain the following values for Yk : 

~4 

where e~ is defined as 

e-~U(2 -- e-~U) 
+ 2N 2 e x p ( -  aN ~) (23) 

(1 - -  e - ~ )  ~ 

e-2~N(2 __ e--2~N) 
q- 2N 2 exp(--2'o~N 2) -I-- exp(--~c~N 2) (24) 

(l -- e-~N) 2 

e--2aN 

I - -  e - ~ N  (25) 

a = l f i l x /N2  

One can find an % independent of N such that for o~ > ~ o / N  (N > 1) 

y~ > y2 ~ 
and 

Y4 > Yl a 

I f  one substitutes (27) and (20)-(22) one obtains 

s(B) <~ r~/~ 

(26) 

(27) 

(28) 
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I f  one substitutes (19) and (28) into Eq. (10) one now obtains (using i = 2I 
as summation variable) 

i = 6  

7 (16~,33 (29) 
~< 32 (1 - -  4 ),1/2)~ 

provided ~ > %IN and 8 ~< 1. 
In the appendix the following expression for 8 is proven: 

8 = [exp(--�89 - -  exp[--c~(N --  1)]} -1 {1 - -  exp[ - -~(N + 1)]} -1 

§ 5N 2 exp(--  o~N~/2) (30) 

For  N > 1 one can find a positive constant co 6 such that 8 ~< 1 provided 

/3/z = 3NZ~ >/cooN In N (31) 

I t  is easy to chose Wo so that Eq. (31) i m p l i e s .  > O~o/N. Actually one finds 
for N large enough that the best possible estimate for w 0 is 3. This expression 
is substituted into (29): 

/3(x) ~< coN -2~~ 

where co is a constant independent of N for a given co 0 . 
There remains the problem of the virtual hexagons. I f  a point is covered 

with a virtual hexagon not belonging to the outer A structure, the case is 
already treated by the preceding argument since the hexagon will necessarily 
be inside a contour. The probability of  a point being covered by a virtual 
hexagon belonging to the outer A structure is obviously less than e -e", 

p~(x) < e -~" <~ e-% NlnN (33) 

The total probability of a given point x not being covered by a hexagon 
belonging to the outer A structure is 

pA(x) <~ _~(x) -t- p~(x) (34) 

Combining Eqs. (32)-(34), it is possible by chosing co 0 sufficiently large to 
ensure that 

p.~(x) < 1 - -  (1/3N 2) (35) 

Since we have all together 3N 2 different structures, the inequality (35) implies 
that the A structure is strictly more probable than at least one of the other 
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structures; from this one easily finishes the argument by concluding that the 
structure depends on the boundary; consequently the system is not in the 
fluid state. 

4. C O N C L U S I O N  

Using the Peierls argument, we have proved the existence of phase 
transitions in a system of hard hexagons on a triangular lattice for values of 
the fugacity 

z > N  ~N 

We observe, however, that this bound on the fugacity gives no proof  of 
a phase transition in a continuous system of hard hexagons, and one should 
not expect a possible phase transition to be provable by this method since 
the ordered structure obtained in the continuous limit clearly has no phase 
volume. If  the ordered state exists of a given fugacity, and if it consists of 
large areas covered with close-packed hexagons, then this phase has little 
to do with the solid phase conjectured for hard disks in the continuum case. 

The above proof  for the coexistence of solid states is based on the 
improbability of a liquid phase (it is 8 ~< 1 which determines the bound on 
E/z), and once this is fulfilled the surface of the liquid drop is automatically 
so unfavorable that the liquid drop becomes very unlikely 

The final estimate 

fl/x >~ 3Nln N, N>No 

seems remarkably independent of the details of the proof. The above proof  
easily extends to other orientations of the hexagons relative to the triangular 
lattice, among which cases are the case of second-nearest-neighbor exclusion 
on the triangular lattice. 

A P P E N D I X  

In this appendix we prove the upper bounds to the contributions from 
single hexagons given in Eqs. (23)-(25) and (30). The starting point is Eqs. 
(14)-(16). 

The first problem is to define a division of the free area A(C) into contri- 
butions from the individual hexagons as indicated in Eq. (14). Since we want 
an upper bound, it is clear that we are allowed to neglect part of the area. 

The general principle for attributing empty area to a hexagon will be 
to consider the empty area that a given hexagon prohibits any other hexagon 
from covering as belonging to that hexagon. The problem is then to avoid 
counting the same area twice. Let us first consider the outer inner hexagons. 

82219/I-3 
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iIt 

Fig. 4. Two adjacent segments of the outer boundary of a contour. The segments are 
both of type 1 ; they are shown by heavy lines. The shaded hexagons next to the segments 
are on the interior side. 

Figure 4 shows two pieces of contour of type 1. For the orientation shown in 
the figure the hexagon considered to be the adjacent hexagon to a given piece 
of contour will be the hexagon with its upper left corner inside the shaded 
area of hexagonal shape shown next to the piece of contour. With this 
definition there can be no or one hexagon adjacent to a piece of contour, but 
never more than one. For a given position of the adjacent hexagon the area 
not coverable is calculated as if no other hexagon had yet been placed. In 
order to avoid double counting of uncoverable area, we make the main 
convention of only counting such an area if it belongs to the aforementioned 
shaded area. However, we also include an uncoverable area outside the 
shaded area if it is certain that it cannot be made uncoverable by another 
hexagon; see Fig. 5 for an example. 

In placing the adjacent hexagon, six principally different positions will 
occur corresponding to six different shapes of the uncoverable area (see 
Fig. 6). The two cases denoted ~4 and B on the figure will give identical 
contributions because of symmetry. 

Figure 7 shows an example of case A. Introducing x and y coordinates 

?t 
/ / 

__/ 
Fig. 5. A boundary segment of type 1 (heavy line) and the adjacent hexagon. The 
boundary of the region of hexagonal shape inside which uncoverable area always is counted 
is indicated with dot-dashed lines. The actual uncoverable area inside this region is shaded 
horizontally. Further uncoverable area is shown obliquely shaded (not counted) and 
cross-hatched (counted, since it can not be made uncoverable by another hexagon). 
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Fig. 6. If the position of the hexagon is given by the position of the upper left corner, 
each of the six different shapes of the uncoverable area will correspond to the corner in 
one of the six triangles shown on the figure. 

! 

/ -y 

Fig. 7. A segment of type 1 and the adjacent hexagon in a position corresponding to 
case A. The x and y coordinates which give the positions of the hexagons are shown. The 
part of the uncoverable area that is counted is divided into pieces numbered from 1 to 4 
in the order which corresponds to the order of the terms in Eq. (A.1). 

as shown in the figure a nd  taking the lattice constant  o f  the triangular lattice 
as unit length, one finds the uncoverable area 

a' = xy  -k �89  q-- N --  y)  -}- x ( N  -- y)  4- �89 
(A.1) 

~- N ( x  -Jr- Y) 

(this corresponds to the unit o f  area being two elementary triangles as 
int roduced in Definition 3). 

For  the cases C - F  one finds that  the area is certainly larger than N ~. 
Also, if  no hexagon is placed (for example, see Fig. 8), there will be an un- 
coverable area o f  at least N 2 which is not  counted in connections with other  
hexagons (such an area is shown shaded in the figure). 

Using the definition o f  b, Eq. (15), one finds on summing over all 
possible posit ions o f  the hexagon including the possibility o f  not  placing a 
hexagon 

N N 

b < ~ ~, exp[ - -~N(x  + y)] - -  1 + 2N2exp(--c~N ~) (A.2) 
~ 0  'b'=0 
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/ 

Fig.- 8. Three consecutive segments of type 1. The two adjacent hexagons figure belong 
to the first and third segments. No hexagon can be placed next to the middle segment. The 
uncoverable area that is counted for the middle segment is shaded. 

The minus one comes from the fact that the position x = y = 0 is not 
allowed since that would mean that the hexagon would belong to the outer 
A structure. Extending the summation to infinity, one easily confirms Eq. (23). 

Next we consider a piece of contour of type 3. For the orientation shown 
in Fig. 9 the hexagon adjacent to the given piece of contour has its upper left 
corner inside the shaded area. 

We do not get more possibilities for the position of the upper left corner 
than the ones inside the shaded area because we also want the upper right 
corner to be inside the hexagon on the figure in order to ensure that neigh- 
boring pieces of contour are treated consistently. 

For a given position of the adjacent hexagon the uncoverable area must 
belong to the aforementioned hexagon in order to avoid double counting. 
However, we also include here the uncoverable area outside the hexagon if it 
cannot be made uncoverable by another hexagon. 

Two principally different positions of the adjacent hexagon will occur 
corresponding to two different shapes of the uncoverable area (see Fig. 10). 
In Fig. 11 an example of case A is shown. Introducing x and y coordinates 
as shown in the figure one finds the uncoverable area 

a' = �89 + y + N q:- N + y) + �89 y ) ( N - -  x ~- N - k  y) 

+ l y ( N  -k N -- y) (A.3) 

= 2 N ( x + y ) + x y  > ~ 2 N ( x + y )  

For case B one finds that the area is certainly larger than 2N ~. When no 

Fig. 9. A boundary segment of type 3 (heavy lines). The boundary of the hexagonal 
region inside which uncoverable area always is counted is indicated with dot-dashed lines. 
The upper left corner of the adjacent hexagon must be inside the shaded region. 
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,v  r 

Fig. 10. The two regions A and B that give rise to two different shapes of the un- 
coverable area when the upper left corner of the adjacent hexagon is placed inside them. 

_ _ _ ~ N  N . . . . . . .  

Fig. 11. A segment of type 3 and the adjacent hexagon in a position corresponding to 
case A. The x and y coordinates which give the positions of the hexagons are shown. The 
part of the uncoverable area that is counted is divided into three pieces numbered from 
1 to 4 in the order which corresponds to the order in Eq. (A.3). 

hexagon is p laced  one obta ins  an area  larger  than  ~-NE Using  the defini t ion 
o f  b [Eq. (15)], one finds on summing  over  all poss ible  pos i t ions  o f  the 
hexagon ( including no hexagon)  

~ + ~ + N  

Z b  ~ Z Z e x p [ - - ~ 2 N ( x + y ) ] - -  1 + � 8 9  ~exp[ -2o~N ~] 

+ e x p ( - - ~ N  ~) (A.4) 

Extending  the uppe r  l imit  o f  summat ion  to infinity, one easily confirms 
Eq. (24). 

/ /  
/ 

! 
// 

Fig. 12. A boundary segment of type 4 (heavy lines) and the hexagonal region inside 
which uncoverable area is counted (dot-dashed lines). The adjacent hexagon will have 
the upper left corner on the thin line. 
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N 

// 
/ 

Fig. 13. An adjacent hexagon placed next to a boundary segment of type 4 (heavy lines). 

The last piece of boundary to consider is type 4. For  the orientation 
shown on Fig. 12 the adjacent hexagon has its upper left corner on the thin 
line. This time we only include uncoverable area inside the hexagon indicated 
on the figure. Figure 13 shows an example. Introducing the x coordinate as 
shown on the figure, one finds the uncoverable area 

a = 2 N x  (A.5) 

Again using the definition of b one finds on summing over all possible values 
of  x 

N 

Z b = ~ e -~2u~ (A.6) 
~=1  

Extending the summation to infinity, one confirms Eq. (25). 
We have thus dealt with the outer inner hexagons in full agreement with 

the convention introduced for splitting up the area of the contour into contri- 
butions from the individual inner hexagons. 

While the outer inner hexagons were placed independently of each other 
with no preferred order, the inner inner hexagons will be placed in fixed 
order such that an inner hexagon is placed close to already fixed hexagons, 
thereby enlarging the uncoverable area, and thus stepwise continuing the 

Fig. 14. Part of the outer boundary of a contour 
with the adjacent hexagons placed. The arrows 
indicate where to start placing the inner hexagons. 
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Fig. 15. The general situation that arises when an 
inner inner hexagon has to be placed. Some hexagons 
have already been placed and some area secured as 
uncoverable (cross-hatched on the figure). The next 
hexagon is to be placed as indicated by the arrow. 

C)C  
I 

C;C) 
II 

111 

1V 

V 

Vl 

Fig. 16. The six principal positions of the two preceding hexagons. 



40 Ole J. Heilmann and Eigil Praestgaard 

contour. The starting point will be that we have placed all the outer inner 
hexagons. In Fig. 14 part  of the boundary is shown with the adjacent hexa- 
gons in position. The arrows then indicate where the first inner inner hexa- 
gons are to be placed. The general situation is the one shown in Fig. 15. The 
next hexagon is to be placed as indicated by the arrow and the area that has 
already been secured as uncoverable is cross-hatched; for our purpose the 
position of the last two hexagons will give sufficient information about  the 
preceding part  of the contour. 

Taking full account of  the symmetry of the underlying triangular 

\ / \\ 

'\ II //  X 
/ I ', ,' III ", 

. . . . . . . .  r  . . . . . . .  

' ,  VI ,/""~ IV,/ '  
\ / V \ / 

Fig. 17. When the leftmost corner of a hexagon is placed consecutely in each of the 
six triangles the six main positions shown in Fig. 16 arise. 

\ / 
Fig. 18. The enlargement of the uncoverable area 
(shaded) that is obtained by placing a hexagon next to 
two preceding hexagons (marked pre). 
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lattice, one finds six principal positions of the two preceding hexagons (see 
Fig. 16). These six main positions arise when the leftmost corner of the 
rightmost hexagon is restricted to each of the six triangles shown in Fig. 17. 
The uncoverable area a attributed to an inner inner hexagon is the enlarge- 
ment of the nncoverable area obtained by placing this hexagon relative to 
the two preceding ones as shown in Fig. 18. It is clear that this convention 
ensures that we do not include uncoverable area twice. 

The possible ways of placing this hexagon are limited by the requirement 
that it should be the next inner inner hexagon and the fact that large enough 
voids are filled with virtual hexagons. In a few special cases this will force 
us to consider the placement of two hexagons simultaneously or to use the 
positions of the three preceding hexagons to gain sufficient information about 
the preceding parts of the contour. 

Each of the six main cases will give rise to a large number of principally 
different positions of the next hexagon; we shall not amuse the reader by 
working out all the cases but confine ourselves to case VI, which turns out to 
give the largest value of ZJ b(j). 

A number of principally different positions for the next hexagon arise 
each corresponding to a different shape of the uncoverable area. Figure 19 
shows an example, with the two preceding hexagons placed in accordance 
with case VI, the relative positions of the two hexagons being determined by 
introducing coordinates u and v as shown in the figure. Defining the position 
of the next hexagon by the position of the upper right corner, each of the 
numbered areas will correspond to principally different shapes of the un- 
covetable area. Additional principally different positions exist outside the 
numbered areas. 

In Fig. 20 is shown an example of the next hexagon being in position 1. 

~'' 9' vc-" 1~ 

14 12 

Fig. 19. The two preceding hexagons placed in accordance with case VI; the relative 
position is defined by u and v as shown. If the position of the next hexagon is defined by the 
position of the upper right corner, each of the numbered regions corresponds to principally 
different positions of this hexagon. 
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Introducing x and y coordinates as shown in the figure, one finds the un- 
coverable area 

a" = �89 - -  x) ~ + y(v  § N)  + x ( N  -k u - -  y )  § �89 - -  y)~ 

= �89 ~ + �89 ~ + N(x  + y)  + (x - -  y)(u - -  v) + �89 - -  y)~ 
(A.7) 

Figure 21 shows an example of  the next hexagon being in position 4. Just as 
for the hexagon in position 1, one finds the uncoverable area 

a' =- �89 2 4- �89 2 4- N ( x  -F y )  -[- (x - -  y ) (u  - -  v) -4- �89 - -  y)2 

pre  

x 

1 \  2 

\ 

J-Y pre 

Fig. 20. The two preceding hexagons (marked pre) placed as case VI and the next 
hexagon placed in position 1 (see Fig. 19). The position of the next hexagon is given by 
x and y coordinates as shown. The new uncoverable area is divided into parts numbered 
in correspondance with the order of the terms appearing in Eq. (A.7). 

_ p re  

Fig. 21. The two preceding hexagons (marked pre) placed as case VI and the next 
hexagon placed in position 4 (see Fig. 19). The position of the next hexagon is given by 
x and y coordinates as shown. The new uncoverable area is divided into parts numbered 
in accordance with the numbering on Fig. 20. 
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) pre 

Fig. 22. The two preceding hexagons (marked 
pre) placed as case VI and the next hexagon 
placed in position 9 (see Fig. 19). It is easily seen 
that the uncoverable area exceeds 1N2. 

which is the same result as for  position 1 ; in fact one obtains the same result 
for  position 1-8. 

In  Fig. 22 is shown an example o f  position 9. One obtains the result 

a '  >~ �89 2 (A.8) 

a result which actually holds for  all the remaining cases. I f  there is no  hexagon 
with its upper  right corner  inside the heavy line shown in Fig. 23, one can 
surely place a hexagon as indicated. The total number  o f  positions inside this 
area is less than 5N 2. 

pge 

> 
Fig. 23. If no hexagon has been placed 
with its upper right corner inside the heavily 
bordered region, a hexagon can be placed 
as indicated. 
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Summing  over  all pos i t ions  of  the hexagon,  one then obta ins  

{exp[--�89 + v~)]}(1 - -  exp[--c~(N + u - -  v)]} -1 

• {1 - -  exp[--c~(N + v - -  u)]} + 5N ~ exp(--c~N2/2) 

~< [exp(--�89 - -  exp[--c~(N - -  1)]} -1 {1 - -  e x p [ - - ~ ( N  + 1)]} -z 

+ 5N 2 exp(--c~NZ/2) 

----8 

As  one cont inues to  place the inner  hexagons one will eventual ly  reach a 
s i tua t ion  where it is clear  tha t  the con tour  is finished. I f  there  remain  hexa-  
gons, i.e., if  we have p laced  a number  less than  m, the remain ing  hexagons  
canno t  be p laced;  this cor responds  to  a~ = 0 and Z b~ = 1. 
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